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1 Introduction 

Background 

Integrated Training Area Management (ITAM) Program 

The Department of Defense (DoD) is responsible for administering more than 25 
million acres of federally owned land in the United States (Public Land Law Re-
view Commission 1970), making it the fifth largest Federal land management 
agency.  A major objective of the ITAM program — the Army’s program for man-
aging training land — has been to develop a method for estimating training land 
carrying capacity.  The Office of the Deputy Chief of Staff for Operations and 
Plans (ODCSOPS) defines training land carrying capacity as the amount of 
training that a given parcel of land can accommodate in a sustainable manner, 
based on a balance of use, condition, and maintenance practices.  ODCSOPS has 
sponsored the Army Training and Testing Area Carrying Capacity (ATTACC) 
program to estimate this training land carrying capacity. 

ATTACC Methodology 

The ATTACC methodology is used to estimate training and testing land carrying 
capacity.  It is also used to determine land rehabilitation and maintenance costs 
associated with land-based training and other land uses.  The ATTACC Hand-
book (U.S. Army Environmental Center [AEC] 1999), Army Regulation (AR) 350-
4, and Department of the Army Pamphlet (DA PAM) 350-4 document the stan-
dard operating procedures for implementing ATTACC. 

The Evaluation of Land Value Study (ELVS) methodology, a precursor to 
ATTACC, was an initiative sponsored by ODCSOPS and the Assistant Secretary 
of the Army (Installations, Logistics, and Environment) [ASA (IL&E)].  ELVS 
was developed to estimate training land carrying capacity and the cost of land 
rehabilitation and maintenance associated with land-based training (Anderson 
et al. 1996).  The ELVS methodology quantified training land condition in terms 
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of Maneuver Impact Miles based on mileage projections from the Battalion Level 
Training Model and training event and vehicle impact severity factors.  It also 
used a modification of the Revised Universal Soil Loss Equation (RUSLE)* to 
estimate land condition in terms of erosion status as a function of the training 
load.  Land rehabilitation and maintenance costs were obtained from existing 
installation records and regional cost estimates of particular practices.  The 
ELVS methodology was applied to eight pacing units in heavy maneuver train-
ing at Fort Hood, TX, and the Combat Maneuver Training Center, Hohenfels, 
Germany. 

The ELVS methodology was expanded, updated, and redesignated as ATTACC.  
The ATTACC methodology extends the ELVS initiative to include all types of 
Army units (including unique combat units), Army service schools, Reserve 
Component (RC) units, and RC-unique requirements.  The ITAM program is in-
tegrating the ATTACC methodology into the Army’s Weapon System Cost Factor 
Development Program and providing tools for installation personnel to use to 
develop local requirements and impacts analysis.  Portions of the ATTACC 
methodology were incorporated into the Range Facilities Management and Sup-
port System to provide installation schedulers with a means to estimate training 
load during scheduling activities. 

ATTACC-Related Army User Requirements 

Documentation of the Army’s environmental technology requirements has been 
an iterative process that began with a series of meetings in 1993 and the Office 
of the Directorate of Environmental Programs’ (ODEP’s) publication, U.S. Army 
Environmental Requirements and Needs, which describes the critical research, 
development, test, and evaluation needs for accomplishing the Army’s mission 
with the least impact or threat to the environment.  These Army-level require-
ments were reviewed for their effect on readiness, quality of life, the environ-
ment, and the timeliness needed for the Army to maintain compliance with envi-
ronmental regulations.  All major commands, major subcommands, ODCSOPS, 
and the Office of the Deputy Chief of Staff for Logistics were involved in estab-
lishing the prioritized and validated list of the Army’s environmental technology 
requirements. 

                                                
* Described in Chapter 2. 
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Land Capacity and Characterization is the third priority conservation user re-
quirement on the Army’s list.  This user requirement defines the Army’s need to 
estimate training land carrying capacity, and describes the ATTACC methodol-
ogy as a means to provide land managers with scientifically based information to 
support sound decisionmaking.  However, this user requirement also defines the 
current version of ATTACC as limited in its ability to provide the most accurate 
information for decisionmaking.  This limitation is related to the accuracy of in-
put data and a simplistic characterization of the three components of the model.  
The user requirement identifies research and development required to improve 
the accuracy of ATTACC. 

The Land Capacity and Characterization user requirement identified 28 exit cri-
teria.  Each criterion defines a specific product required to address a specific as-
pect of the overall requirement.  Two exit criteria address the temporal and spa-
tial uncertainty of model inputs and predictions.  These exit criteria are: 

1. Develop a protocol, tool(s), and/or factors for installation-level use that reflect a 
probable range of results in the ATTACC methodology. 

2. Develop a protocol, tool(s), and/or factors for installation-level use that improve 
spatial results from ATTACC. 

ATTACC Sensitivity Analysis 

A sensitivity analysis evaluates the magnitude of changes in a model’s output as 
a function of changes in the input parameter values.  Moreover, a sensitivity 
analysis of a model’s responses to variations in input values can be used to de-
termine the relative importance of individual input values.  Results of a sensitiv-
ity analysis are used to prioritize data acquisition and model development ef-
forts. 

A sensitivity analysis of ATTACC methodology (Anderson 1999) has found the 
methodology to be sensitive to changes in the climatic factor of the RUSLE.  This 
finding implies that improvements to the R factor portion of the methodology can 
result in an overall improvement in model accuracy.  The R factor will be de-
scribed in the next chapter. 

Objectives 

The purpose of this research was to determine a mapping strategy for spatial 
and temporal prediction and uncertainty analysis of the rainfall and runoff ero-
sivity R factor.  The strategy, presented in this report, is based on sequential 
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Gaussian simulation.  Its key is modeling spatial and temporal variability of the 
R factor using semi-variograms and deriving expected estimates and their vari-
ances at any location and time.  The temporal variability of this factor is investi-
gated by annual, seasonal, and half-month time series simulation.  The specific 
objective was to compare uncertainty using the simulation and traditional iso-
erodent maps.  The strategy is illustrated in a case study in which no rainfall 
data were available for the area of interest.  The study area was expanded to in-
clude a larger area where rainfall data were available to develop prediction mod-
els.  From the larger area, data for the area of interest on Fort Hood was then 
extracted. 

Approach 

The temporal and spatial variability of the RUSLE R factor was first modeled 
using semi-variograms in geostatistics.  Sequential Gaussian simulation was 
then used for uncertainty analysis.  A case study illustrates the strategy. 

Previous applications traditionally used R factor values obtained from empirical 
isoerodent maps that were assumed to be constant over time and space.  R factor 
values using the proposed strategy were compared to the traditional approach to 
demonstrate differences between the two approaches. 

Scope 

The project presented in this report is part of a larger initiative titled Error and 
Uncertainty Analysis for Ecological Modeling and Simulation.  The objectives of 
the larger effort are to develop a general methodology and framework for spatial 
and temporal modeling, simulation, and uncertainty analysis of natural re-
source, ecological, and environmental systems.  Furthermore, various sources of 
errors such as measurement errors, sampling errors, model errors, expert knowl-
edge, uncertainty, etc., are being identified, their propagation modeled and error 
budgets developed in order to provide management guidelines.  The case study 
selected for this overall effort is the ATTACC methodology.  The results pre-
sented in this report are for one factor of the RUSLE, a central component of 
ATTACC.  Similar efforts have been initiated for other components of the 
RUSLE and ATTACC models.  Results of these efforts are being reported else-
where.  The information provided here refers to the ATTACC methodology as de-
scribed in the ATTACC Handbook (AEC 1999). 
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Mode of Technology Transfer 

This strategy for RUSLE R factor prediction and uncertainty analysis will be 
provided directly to Army personnel responsible for ATTACC implementation.  
The information is also provided to organizations responsible for developing and 
refining the ATTACC methodology. 

Units of Weight and Measure 

Some U.S. standard units of measure are used in this report.  A table of conver-
sion factors for Standard International (SI) units is provided below. 

 
SI conversion factors 

1 in. = 2.54 cm 
1 ft = 0.305 m 
1 lb = 0.453 kg 
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2 Approaches for Derivation of R Factor 
Values 

The RUSLE is widely used to predict average annual soil loss for specific loca-
tions.  RUSLE is an empirical model in which soil loss depends on the factors of 
rainfall erosivity (R), soil erodibility (K), slope steepness (S), slope length (L), 
cover management (C), and support practice (P) (Renard et al. 1997). 

Soil erosion is greatly influenced by the intensity and duration of precipitation 
events and by the amount and rate of the resulting runoff.  The R factor is a 
quantitative expression of the erosivity of local average annual precipitation and 
runoff.  R factor values are derived from research data (Wischmeier 1959; 
Wischmeier and Smith 1958).  Erosivity index (EI) values are estimated for each 
precipitation event.  The annual rainfall and runoff erosivity factor is the sum of 
the EI values for all rain events in a year.  Larger rainfall and runoff erosivity 
factor values indicate climatic conditions with higher potential for soil loss. 

Isoerodent maps developed using historical data (frequently a 30-year period) 
are widely used to estimate a rainfall EI for a specific area (Renard et al. 1997).  
Linear interpolation is used to estimate EI between the contour lines of the iso-
erodent maps.  This approach assumes that the rainfall erosivity factor is linear 
over space and constant over time.  As suggested by McGregor, Mutchler, and 
Bowie (1980), this assumption may not be true in all cases.  For example, global 
climate change might result in a change in the frequency of annual precipitation 
and thus in a change of rainfall EI. 

Although spatially explicit EI can be derived by linear interpolation, a constant 
value for an area is usually applied.  This application may lead to spatial predic-
tion smoothing and unaccounted uncertainty related to this smoothing.  Fur-
thermore, uncertainty of the rainfall EI from the isoerodent maps is usually un-
known.  Additionally, calculation of R factor values for new locations and areas is 
laborious and requires long-term rainfall intensity data. 

An alternate method is to use a simple linear regression between the rainfall EI 
and average annual precipitation data (Bollinne et al. 1980).  Mikhailova et al. 
(1997) further developed a regression of the rainfall EI as a function of average 
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annual precipitation and elevation.  Elevation was found to be highly significant 
in predicting rainfall EI.  Goovaerts (1999) presented a geostatistical method for 
this purpose, where a digital elevation model is incorporated into mapping an-
nual and monthly erosivity values.  His study suggested that geostatistical 
methods were promising for monitoring and mapping rainfall and runoff erosiv-
ity.  Geostatistical methods are divided into kriging and simulation algorithms, 
which are extensively applied in natural resource and environmental sciences. 

Kriging is a generalized least-squares algorithm minimizing the magnitude of 
the error variance with unbiased estimates, and can be used for making spatial 
prediction at unknown locations based on measurements from known locations.  
Modeling prediction uncertainty is based on semi-variograms measuring the spa-
tial variability of the data.  Kriging estimates are smoothed and are best in local 
prediction; however, kriging variances depend only on the data configuration and 
not on the actual observed data, and thus do not adequately reflect uncertainty.  
Examples of kriging include the interpolation of heavy metal concentrations in a 
contaminated site using three kriging estimators by Juang and Lee (1998) and 
the work of Rogowski and Wolf (1994) on variability of soil map unit delineation 
using a kriging method. 

The other geostatistical approach uses spatial simulation techniques whereby 
the conditional distributions are developed according to collected data sets.  
From these distributions the values of the stochastic variable at unknown loca-
tions are drawn at random.  Once values at all the unknown locations are simu-
lated, a realization of the stochastic variable is developed.  After many realiza-
tions, the set of alternative realizations provides a visual and quantitative 
measure (actually a model) of spatial uncertainty (Wang et al. 2000; Goovaerts 
1997).  The expected estimates and various uncertainty measures such as condi-
tional variances and probability maps can be derived from the realizations.  The 
error variances depend not only on data configuration, but also on the data 
themselves, thus implying global uncertainty.  The most commonly used tech-
nique is sequential Gaussian simulation. 
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3 Study Area, Data Set, and Rainfall 
R Factor 
Fort Hood, the study area for this research, occupies 87,890 hectares (ha) (Na-
kata 1987) in the central Texas counties of Bell and Coryell.  Fort Hood’s climate 
is characterized by long, hot summers and short, mild winters.  Average tem-
peratures range from a low of about 8 °C in January to a high of 29 °C in July.  
Average annual precipitation is 81 cm.  Table 1 shows average monthly and 
maximum rainfall values for Fort Hood. 

Elevation at Fort Hood ranges from 180 to 375 m above sea level with 90 percent 
of the area below 260 m.  Most slopes are in the 2 to 5 percent range, with slopes 
in excess of 45 percent occurring as bluffs along the flood plain and as the sides 
of slopes on the hills.  Fort Hood lies in the Cross Timbers and Prairies vegeta-
tion area (Gould 1975), which is normally composed of oak woodlands with grass 
undergrowth.  Soil cover is generally shallow to moderately deep and clayey, 
underlain by limestone bedrock. 

Based on traditional isoerodent maps, the annual R factor value for Fort Hood is 
a constant 270 (Renard et al. 1997).  No rainfall observation stations were within 
the study area, however.  It was necessary, therefore, to use data from rainfall 
observation stations in the surrounding area.  The 247 rainfall stations ulti-
mately used were located in Texas and the surrounding states of Arkansas, Colo-
rado, Kansas, Louisiana, New Mexico, and Oklahoma.  Figure 1 shows the geo-
graphical location of these stations.  Out of the 247 stations, 29 were randomly 
sampled and used as a validation data set.  The remaining 218 stations were 
used to develop the spatial models. 

Table 1.  Average annual climatic data for Fort Hood, TX. 

Month 
Average Monthly 

Rainfall (cm) 
Maximum 24-hr 

Rainfall (cm) 
January 5.1 5.8 
February 5.6 6.3 
March 5.6 5.1 
April 9.4 4.3 
May 11.4 22.6 
June 8.4 8.6 
July 4.6 4.1 
August 7.1 6.1 
September 8.9 12.2 
October 9.7 7.9 
November 5.1 5.6 
December 4.3 3.8 
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Case study area  
Figure 1.  Spatial location of rainfall stations in large area. 

The R factor values for rainfall erosivity were calculated for each rainfall station 
by a method developed by a research team headed by Hollinger.*  This team is in 
the process of calculating R factor values on a half-month basis across the entire 
United States.  An annual R factor value is the sum of rainfall EI for all rain 
events within a year.  If a rainstorm produces less than 0.5 in. of rain during a 
period of 6 hours (Wischmeier and Smith 1978), the EI of the rainstorm is ob-
tained by multiplying kinetic energy of the rain with 30-minute maximum rain 
intensity.  Equation 1 was used to calculate the energy contained in the volume 
of rain: 

Equation 1.  Erosivity equation. 

E 0.29 [1 0.72 exp( 0.082 I)]= × − × − ×  

where E = the kinetic energy in the shower (MJ ha-1 mm-1) 
 I  = the shower intensity in mm hr-1. 

The calculation of an R factor value requires rainfall data over a long term, usu-
ally more than 20 years.  In this study, a data set of 21 years was used.  The EI 
for each year was derived and the mean value for all the years was considered to 
be the rainfall erosivity R factor.  Seasonal and half-month rainfall erosivity val-
ues were computed using the mean values of EI over the 21 years for each half-
month and season. 

                                                
* Steven Hollinger is a Senior Program Scientist with the Illinois State Water Survey, Champaign, IL. 
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4 Methods for Spatial and Temporal 
Modeling 

Experimental semi-variograms measuring the spatial and temporal variability of 
rainfall erosivity were first calculated and modeled for the large area (Fort Hood, 
Texas, and the surrounding states).  Spatial and temporal prediction and uncer-
tainty analysis for annual, seasonal, and half-month R factors were then done 
using sequential Gaussian simulation.  The prediction and variance maps of the 
R factor values were derived over space and time.  The prediction and uncer-
tainty maps for the Fort Hood study area were extracted from those for the large 
area.  Simulations were tested using the differences between estimates and ob-
servations from the validation data.  The results were compared with those ob-
tained using traditional isoerodent maps in terms of uncertainty analysis. 

Because the rainfall stations were not systematically located in the larger study 
area, data for the rainfall erosivity R factor were de-clustered to obtain a reason-
able weight for each station.  Further, the Gaussian simulation requires normal 
distributions of data, so normal score transformation of the original data was 
done to make the transformed data normally distributed.  The spatial variability 
of the transformed data (instead of the original data) was then modeled using 
semi-variograms and used in the simulations.  The methods are briefly described 
below. 

Semi-variogram 

A semi-variogram measures the spatial variability of a random variable.  By 
sampling a random variable (z) in a study area, observations (n) are acquired 
(z(ua) (a = 1, 2,…,n)).  The vector of spatial coordinates of the ath individual is ua.  
The experimental semi-variogram g(h) is generally calculated from samples us-
ing the following expression (Krige 1966): 

Equation 2.  Semi-variogram equation. 

( )
2

1

1( ) ( ( ) ( ))
( )

N h

h z u z u h
N h α α

α
γ

=
= − +�  
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where N(h)  = the number of pairs used 

 h = vector separating two values 
 z(ua) and z(ua+h) = the two values of the interest variable separated by a 

distance of h. 

The magnitude of the semi-variogram quantifies the spatial variability.  The lar-
ger the magnitude of the semi-variogram, the higher the spatial variability and 
the lower the spatial correlation in the data set. 

Ideally, the value of the semi-variogram should be zero when the separation vec-
tor h is zero.  In practice, this is usually not true because of measurement errors.  
In this case, a so-called “nugget effect” (nugget variance) exists.  As the semi-
variogram increases, separation distance increases and reaches its maximum at 
a distance called range parameter.  The maximum semi-variogram value is sill 
parameter (structured variance).  The experimental semi-variograms are often 
fit using several models that include spherical, Gaussian, and exponential mod-
els, and the model that best fits the data is selected.  Additionally, different di-
rections are taken into account to determine whether the spatial variability is 
isotropic or anisotropic. 

Simple Kriging 

Simple kriging allows the estimation of unknown locations based on information 
gathered from the known locations within a neighborhood given a radius for 
searching for the data.  Kriging estimates incorporate the spatial variability 
structure of the data into predictions.  The simple kriging estimator (Krige 1966) 
is given as: 

Equation 3.  Simple kriging estimator equation. 

( ) ( )
*

1 1

( ) ( ) ( ) 1 ( )
= =

� �
= + −� �

� �
� �
n u n u

sk sk
skZ u u Z u u mα α α

α α
λ λ  

where * ( )skZ u  = a simple kriging estimate at an unknown location (u) 

n(u)  = the number of the data used at the known locations given a 
neighborhood 

( )sk uαλ  = the weight assigned to the datum z(ua) 

m = the expectation value of Z(u). 
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In simple kriging, the mean should be a known constant over all the area.  The 
error variance is minimized under the constraints that it is unbiased with an er-
ror mean of zero.  The error variance, 2

skσ , is usually written in terms of covari-

ance functions, C(.) (Goovaerts 1997), and it is: 

Equation 4.  Error variance equation. 

( )
2

1
(0) ( ) ( )

=
= − −�

n u
sk

sk C u C u uα α
α

σ λ  

Sequential Gaussian Simulation 

Sequential Gaussian simulation assumes that the underlying distribution is 
Gaussian.  As such, the appropriateness of the data distribution must thus be 
tested before simulation.  Distribution that is not normal requires a normal score 
transformation of the original data into a new data set with a standard normal 
cumulative density function, and then the simulated values need to be trans-
formed back to the original scale. 

A data set { }z(u ), 1, 2,3,..., nα α = is sampled from a study area divided into N 

nodes where { }'
jZ(u ), j 1, 2,3,..., N= is a set of random variables defined at N loca-

tions { '
ju } .  Conditionally, L joint realizations { }(l) '

jz (u ), j 1,..., N=  exist for l = 1, 2, 

…, L.  The N random variables can be generated in the sequential Gaussian 
simulation.  The N-point conditional cumulative density function is expressed as 
the product of N one-point conditional cumulative density functions given the set 
of n original data values and N-1 realizations (Goovaerts 1997).  If 

'
N NF(u ; | (n+N-1))z  is the conditional cumulative density function of '

NZ(u )  given 

the set of n original data values and the N-1 previous realizations 
' (l) '
j jZ(u ) z (u ), j 1,..., N 1= = − , the N-point conditional cumulative density function 

follows: 

Equation 5.  Cumulative density function. 

' ' '
1 N 1 N N N

'
N-1 N-1
'
2 2 1

F(u ,...,u ; ,..., | (n)) F(u ; | (n+N-1))

F(u ;z |(n+N-2)) ...

F(u ;z |(n+1)) F(u;z |(n))

= ×

× ×

×

z z z
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The steps for the simulation are: 

1. Test the appropriateness of multi-Gaussian distribution by declustering and per-
forming normal score transformation of the original data and developing stan-
dardization semi-variograms. 

2. Define a random path to visit each node of the grid only once in the study area. 

3. At the first node to be visited, calculate the mean and variance of the Gaussian 
conditional cumulative density function given the n original data using simple 
kriging and the modeled normal score semi-variogram.  From the conditional dis-
tribution above, draw a value, transform it back to the original data, and add it to 
the data set. 

4. At the ith node to be visited, determine the parameters of the Gaussian distribu-
tion given the n original data and all (i-1) simulated values at the locations previ-
ously visited, and for the ith node.  From that conditional distribution draw a 
value that is transformed back and becomes a conditional datum for all subse-
quent drawings. 

5. Repeat step 4 until all N nodes are visited and provided with simulated values. 

Running L times, each time with a possible different path to the N nodes, will 
lead to L realizations from which an expected value and prediction variance for 
each node can be derived.  The realizations thus provide a visual measure and a 
model of spatial uncertainty. 

As previously mentioned, simple kriging estimates are smoothed and are best in 
local prediction; however, kriging variances depend only on the data configura-
tion and not on the actual observed data, and thus do not adequately reflect un-
certainty.  The advantage of the sequential Gaussian method over kriging meth-
ods is that it provides spatial uncertainty analysis by calculating conditional 
variances.  The conditional variance depends on not only data configuration but 
also on data values.  This conditional variance in theory will provide a more real-
istic assessment of uncertainty across space. 
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5 Results 

Spatial and temporal variation of annual and seasonal rainfall erosivity R factor 
observations for the large area are shown in Figure 2.  The annual and seasonal 
R factor values were lower at the west, increased from the west to the central 
east, and slightly decreased further to the east.  The annual R factor values in-
creased slightly from the north to the central and then decreased slightly to the 
south.  Winter, spring, and autumn R factor values increase slightly from the 
north to the south, and the summer values decreased slightly along the direction 
of the north to south.  Overall, the summer R factor values were the largest, fol-
lowed by autumn, spring, and winter R factor values, which were the smallest.  
The Fort Hood study area had no rainfall stations; however, there were four sta-
tions in the proximity of Fort Hood.  Their annual rainfall erosivity R factor val-
ues varied from 317 to 392. 

The observations of half-month rainfall R factor values are not presented here 
because of space limitations.  The spatial variability of the observations for each 
half-month map was similar to that of the annual and seasonal ones in Figure 2.  
That is, the largest values were distributed at the central east and the smallest 
at the west, but their spatial variability was more smooth compared with that of 
annual and seasonal R factor values.  The half-month R factor values and their 
spatial variability rose slowly from the first half of January to the second half of 
March, then rose rapidly until the first half of June.  After that period, they be-
gan a trend of very slight decrease and fluctuation until the first half of October, 
then decreased until December.  The smallest values and variability occurred in 
the first half of January and the largest occurred in the first half of June. 

Figure 3 shows an example comparison of the data distribution with and without 
normal score transformation.  The distribution of original data was obviously not 
normal.  The transformation led to a new data set that was normally distributed.  
The spatial variability of annual, seasonal, and half-month R factor values were 
then analyzed by experimental semi-variograms in the directions of azimuth 0, 
45, 90, and 135 degrees.  The semi-variograms were similar at all the directions 
and considered isotropic.  Figure 4 shows an example of isotropic semi-
variograms. 
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Figure 2.  Spatial location of rainfall stations in the large area used for calibration and their 
annual (top right) and seasonal rainfall erosivity R factor (bottom left). 
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Figure 3.  Comparison of data distribution without (left) and with (right) normal score 
transformation for the rainfall erosivity R factor for the second half of September. 
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Figure 4.  An illustration of the examining isotropic feature of experimental semi-variograms for 
four directions (00, 450, 900, and 1350) for the rainfall R factor during the second half of 
September. 

The experimental and modeled semi-variogram of annual R factor values using 
the original data is shown in Figure 5.  The Gaussian model was the best semi-
variogram model in terms of fit for the original data.  Figure 6 shows experimen-
tal and modeled semi-variograms of seasonal rainfall R factor values using the 
original data.  The Gaussian model was also found to best fit the semi-
variograms.  With the normal score transformation and standardization, the 
semi-variograms for annual and seasonal rainfall R factor values were further 
modeled.  Their nugget, sill, and range parameters are in Table 2, together with 
those parameters using the original data.  After standardization, the sum of sill 
and nugget was forced to be one unit.  The experimental and modeled semi-
variograms for half-month rainfall R factor values were developed.  The figures 
and model parameters are omitted here because of space limitation.  A total of 24 
semi-variogram models were obtained, including 17 Gaussian, 6 spherical, and 1 
exponential models. 
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Figure 5.  Experimental (dots) and modeled (line) omni-directional 
semi-variogram for annual rainfall erosivity R factor values. 
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Figure 6.  Experimental (dots) and modeled (line) omni-directional semi-variograms for seasonal 
rainfall erosivity R factor values. 
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Table 2.  Parameters of semi-variograms using original and standardized data. 

Original data  
(nonstandardized) 

Normal score data 
(standardized) Rainfall 

R factor Nugget Sill Range Model Nugget Sill Range Model 
Annual 1085.6 9233.6 508.7 G 0.353 0.647 827.9 G 
Winter 106.6 543.6 558.5 G 0.150 0.850 900.0 S 
Spring 310.8 1011.9 435.8 G 0.300 0.700 1000.0 S 
Summer 496.3 965.1 920.3 G 0.400 0.600 800.0 S 
Autumn 375.1 775.9 369.8 G 0.350 0.650 1200.0 S 

Note:  G = Gaussian model; S = Spherical model 

The prediction and variance maps of annual rainfall R factor values for the large 
area are shown in Figure 7.  The predicted values of the annual R factor had 
similar spatial distribution to that of the observations.  That is, they increased 
from the west to the east and from the north to south, but the highest values ex-
isted in the central east.  As would be expected, the prediction variances were 
higher outside the area of rainfall stations.  In the large area, the denser the 
rainfall stations, the lower the prediction variance.  The lowest variances existed 
in the central east area because of the high density of rainfall stations.  Further, 
variances were higher in the central west due to the lower density of rainfall sta-
tions. 
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Figure 7.  Prediction and variance images of annual rainfall erosivity R factor values for the large 
area (left) and Fort Hood (right), and the probability map for annual rainfall erosivity being larger 
than 270 (bottom right). 
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The prediction and variance maps for the Fort Hood area were then extracted 
from the corresponding maps for the large area and are shown at the right in 
Figure 6.  The figure also shows the probability map for the annual R factor 
value larger than 270 at Fort Hood.  The predicted values varied from 350 to 
376.  The estimates were not a constant over space, however, and much higher 
than 270 derived from the commonly used isoerodent map for Fort Hood.  The 
probabilities of all the predicted values larger than 270 were higher than 0.7.  
The variances of the predicted values ranged from 3600 to 5437. 

Figure 8 shows the results of spatial and temporal prediction and uncertainty 
analysis for seasonal rainfall erosivity R factor values for both the large area and 
the Fort Hood area.  The predicted values in the large area (Figure 8, upper left) 
varied over space and time.  The values were consistent with observations of the 
seasonal R factor values in Figure 2.  The lowest prediction was in the west and 
the largest in the central east.  Winter, spring, and autumn prediction values 
slightly increased from the north to the central and slightly decreased from the 
central to the south.  For the summer, high prediction values were in some local-
ized areas in the north and south.  Over the four seasons, the summer had the 
largest predicted values and the winter had the lowest.  The predicted values in 
spring and autumn were similar. 
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Figure 8.  Prediction (top) and variance (bottom) images of seasonal rainfall erosivity R factor 
values for the large area (left) and Fort Hood area (right). 
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The variances of the predicted values in spring and autumn, however, were lar-
ger than those in winter and summer (Figure 8, lower left).  The winter R factor 
values had the smallest prediction variances.  As with the annual R factor val-
ues, the prediction variances were higher outside of the rainfall stations’ area.  
Within the rainfall stations’ area, the sparser the rainfall stations and the higher 
the spatial variability of seasonal R factor values, the larger the prediction vari-
ances.  These features for the large area could also be applied to the seasonal 
prediction and variance maps for the Fort Hood area (Figure 8, right).  The esti-
mates and their variances were more smoothing, however, because Fort Hood is 
only a small area within the model development region. 

Figure 9 shows the 24 prediction maps produced from the spatial and temporal 
predictions for half-month rainfall erosivity R factor values for the large area.  
The predicted R factor values had similar spatial and temporal distributions to 
those of the corresponding observations.  Generally, the largest values were at 
the central east and the smallest were at the west.  The spatial variability, how-
ever, was more smoothing than that in the annual and seasonal prediction maps.  
The predicted half-month R factor values varied from 0 to 85.  Overall, the val-
ues increased slowly over the first six half-months and rapidly until the first half 
of June.  The values then fluctuated and decreased slightly until October; then 
quickly decreased to December. 

From the large area maps in Figure 9, 24 prediction maps of half-month rainfall 
R factor values for Fort Hood area were extracted and are presented in Figure 
10.  The predicted values varied from 0 to 31.5 and had less spatial variability 
compared with those for the whole area.  They rose from the first half of January 
to the first half of June, then decreased up to December.  Fluctuations occurred 
in some months (e.g., the second half of March had higher values than the first 
half of April, and the second half of December had larger values than the first 
half of December).  From the second half of June to the second half of October, 
the temporal variability of the predicted values was relatively small. 

The prediction variance images of half-month rainfall-runoff erosivity R factor 
values for the large area were created but are not shown here.  As observed in 
spatial variability of the original observations, the variances increased overall 
from January to June, then decreased up to December except for the time from 
the second half of September and the first half of October, in which the variances 
were greater than those in August and the first half of September.  The largest 
variances occurred in the first half of June.  The 24 variance maps for the Fort 
Hood area (Figure 11) were extracted from the corresponding prediction variance 
maps for the large area.  The variances changed from 0 to 233.  When the pre-
dicted values were small and their spatial variabilities low, their uncertainty in 
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terms of variances was low.  When the predicted values were large and their spa-
tial variabilities high, their uncertainty in terms of variances was high.  The first 
half of January, for example, had the smallest variances because of small rainfall 
R factor values, and the first half of June had the greatest variances because of 
large R factor values. 
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Figure 9.  Prediction images of rainfall erosivity R factor values, on a half-month basis over the 
large area where the rainfall stations are located. 
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Figure 10.  Prediction images of half-month rainfall erosivity R factor values in the  
Fort Hood area. 
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Figure 11.  Prediction variance images of half-month rainfall erosivity R factor values 
for the Fort Hood area. 

The differences between the predicted and observed R factor values for annual 
rainfall erosivity were calculated and plotted against observations using the test 
data of 29 rainfall stations (Figure 12).  The observations varied from 190 to 465, 
and the differences obtained using the simulation varied from -120 to 120.  Over-
estimation occurred in the areas with lower R factor values and underestimation 
in the areas with higher R factor values.  According to coordinates of 30 rainfall 
stations, the rainfall erosivity R factor values were obtained by the traditional 
method of interpolating the isoerodent map and also comparing the observations 
shown in Figure 12.  The differences fell in the range of 0 to -250.  The underes-
timation occurred for all the rainfall stations and was much worse in direction 
and amount than the occurrence of underestimation and overestimation by the 
simulation. 
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Figure 12.  Difference between estimate and observation errors versus observed annual rainfall 
erosivity R factor values for the large area using simulation and a traditional isoerodent map. 

The simulation also resulted in over- and underestimations to the seasonal pre-
dictions in Figure 13 and the overestimation was slightly more significant than 
underestimation.  The range of relative errors (the ratio of a difference to an ob-
servation) for the seasonal R factor values was the smallest in summer, followed 
by autumn, spring, and winter, although the absolute errors were smaller in 
winter than in other seasons. 

The error analysis used the test data of 29 rainfall stations for the annual and 
seasonal rainfall erosivity R factor values (Table 3).  Overall, the simulation for 
annual R factor values led to the average estimate falling into the confidential 
interval at the significant level of 5 percent, although it was slightly overesti-
mated.  The traditional method of using an isoerodent map resulted in serious 
underestimation with a large and negative mean difference and an average es-
timate out of the confidential interval.  The root mean square error (RMSE) us-
ing the isoerodent map was 251 percent of that using the simulation.  In Table 3, 
the average estimates for summer and spring rainfall R factor values were 
within the confidence intervals at the significant level of 5 percent, and the cor-
responding average estimates for winter and autumn were very close to the up-
per limit of the confidential interval. 
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Figure 13.  Difference between estimates and observations versus observed seasonal 
rainfall erosivity R factor values for the large area using the simulation. 

Table 3.  Error analysis for predicting annual and seasonal rainfall erosivity R factor values 
using the test data from 29 observations. 

Confidential Interval 
R factor 

Mean of  
Test Data 

Stdv of  
Test Data Lower Upper 

Mean of 
Estimates Difference RMSE 

Annual 359.06 71.60 331.60 386.66 373.34**    14.28**   61.93**
     212.17* -146.9* 155.24*
Winter 30.04 16.02 23.87 36.22   37.37      7.33   19.35 
Spring 90.19 28.64 79.15 101.23 100.22    10.02   26.88 
Summer 127.22 26.40 117.04 137.40 125.12     -2.10   26.55 
Autumn 91.54 28.42 80.59 102.50 103.81    12.27   26.65 
Note: Stdv = standard deviation, RMSE = root mean square error, the significant level is 5 percent, 
  * = traditional method, and ** = simulation. 

The estimates and observations for time series of half-month rainfall R factor 
values were compared using the test data in Figure 14.  All the average esti-
mates fell within the confidential intervals and were very close to their mean ob-
servations.  The differences between the estimated and observed values fluctu-
ated around zero from -2.4 to 1.8.  The maximum RMSE existed in the first half 
of October and March, when the largest variation of the rainfall R factor was ob-
served in the test data. 
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Figure 14.  Difference and RMSE between estimates and observations; mean of estimates 
(EstimatedMean) of rainfall erosivity R factor values over half-months compared with field 
mean (FieldMean); and lower and upper limits of the confidential intervals (C lower and C 
upper) of observed values. 
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6 Conclusions 

The sequential Gaussian simulation strategy reported in this study provided the 
spatially and temporally predicted values and their uncertainty measures in 
terms of prediction variances for rainfall erosivity R factor values in predicting 
soil loss at unknown locations and areas.  The spatial and temporal distributions 
of the predicted values were similar to the observed data from the rainfall sta-
tions.  This method reproduced the variability of the data over space and time, 
and can thus be recommended as a monitoring and mapping strategy for spatial 
and temporal prediction and uncertainty analysis of the rainfall erosivity R fac-
tor in predicting soil loss.  The results also provide important inputs required to 
complete an overall uncertainty analysis of the RUSLE. 

The rainfall erosivity R factor is an important variable in the prediction of soil 
loss.  However, it is difficult to derive the R factor values in areas where no rain-
fall stations exist.  Traditionally, the most widely used method is to interpolate 
the R factor values from the isoerodent maps where R factor values are assumed 
constant over time.  The method presented in this report suggested a possible 
improvement over the traditional approach in deriving the R factor values. 

In fact, the results from the validation data showed that all the average esti-
mates of the R factor by the simulation for annual, seasons, and half-months 
were within the confidential intervals, except that winter and autumn data were 
very close to the upper limit.  The average estimate of annual rainfall R factor 
values by the isoerodent map was outside its corresponding interval and system-
atically negative.  The annual rainfall R factor values obtained by the simulation 
for the Fort Hood areas without any rainfall stations varied from 350 to 376, fal-
ling into the R factor values of four rainfall stations around it, but much higher 
than the R factor of 270, which was based on the isoerodent map.  That is, the 
annual R factor values from the traditional isoerodent map for the large and 
small areas were much less than the observed and simulated values, which is 
consistent with the findings by McGregor, Mutchler, and Bowie (1980).  The rea-
son for the lower traditional values may be, in part, because different equations 
and data sets were used for calculation of the R factor values for each rainfall 
station. 
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The results in this study also implied that the annual rainfall erosivity R factor 
had a large variability over space.  Even within a relatively small area, such as 
Fort Hood with an area of 87,890 ha, the spatial variability may not be over-
looked.  Moreover, there was a high temporal variability of the R factor in the 
time series of seasons and half-months.  As expected, the summer had the larg-
est R factor values, then autumn, spring, and winter.  The half-month rainfall R 
factor values increased from January to June, then fluctuated and decreased 
slowly to October, and after that tended to rapidly decrease to December.  These 
findings indicate a necessity to derive the local estimates and their uncertainties 
in both space and time for the soil loss prediction system in which spatial and 
temporal variability cannot be overlooked.  On the other hand, these findings 
also imply an importance of vegetation cover to reduce soil loss in summer by 
reducing water runoff. 

When an isoerodent map is used to estimate the rainfall R factor value, its un-
certainty is unknown.  The simulation method reported here provides estimates 
with variances at any unknown locations.  Where the rainfall stations used for 
model development were dense and the rainfall R factor value was low, small 
variances resulted; otherwise the variances were large.  Decisionmakers can 
therefore apply the rainfall R factor estimates based on careful assessment of 
their uncertainties. 
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